BMEG 3111 Course Project

Paralyse need to type word

Stage 2 Report

Group 6
AU Wai Tak, Wales (1155175068)
CHAN Cheuk Ka (1155174356)
CHEUNG Ho Lun, Louis (1155174348)
LAU Man Hei, Wes (1155163433)
HEUNG Hoi Ying, Helen (1155176975)
HO Yu On, Martin (1155175831)

WONG Kin Hang, Koby (1155175687)

Table of Contents

BIIET PrOJECT OVEIVIBW ...t bbb 3
(O] (ol TS [OSSR 3
2.1 CIrCUIT OVEIVIEBW ...ttt bbbt 3
2.2 ElCtromyographocov i e 4
PG I €Y (01 ol0] o[TSP PRSPPI 4
Y cTot g Lo Tors LI DTS o o TSR 5
T8 A o 0] 1< = 1o) SRS 5
K €Y ok olo] o 13N 1 [0 o | APPSR UPP 5
Y0 10T =TI LTS Lo o RSP 6
4.1 SOTEWAIE OVEIVIEWc.eiiiiiiiieeieite sttt bbbttt ettt 6
4.2 EMG INTEIPIEIET ...t 6
4.3 1O CONIOIEE ...ttt 7
4.4 MOUSE INTEITACETeiiiciieeeeee ettt 8
4.5 Supplementary LIDIAITEScccooiiiiiiiiieiee e 8
Y 0] 1=] 16 3 USSP PR PPV PRPRRRRO 10

1
Our project aims to help those who are disabled by amyotrophic lateral sclerosis and similar

Brief Project Overview

quadriplegia-inducing diseases to use a computer, including typing and cursor navigation. Our
product consists of a glasses-mounted gyroscope for cursor movement and an electromyograph
(EMG) for mouse clicks. Users can use their head movements to control the mouse cursor and

contract their cheek muscles for mouse clicks.

Figure 1
User with EMG electrodes attached to his facial muscles

2 Circuit Design

2.1 Circuit Overview

Arduino Leonardo

SCL]—
SDA |
oPREF | AREF [
UNor” BS GND L
_|1ore D12|C _|I0REF D13l
ZJRESET pwMD11[C —JRsT D121
Jaav PwM D10 = 3.3V D11 |
5V — 5V o=
GND D8 —|GND o]
EMG —] GND —|GND [of:]
vin D7 | Jvin D7 |-
GND PWM D& [C Dsl—
o SIG] AD PWM D5 [= AD p5[C
 — VY 4= Al pal—
o Vs A2 PWM D3 = A2 D3
GND A3 D2|— A3 D2
o- wsC . Vv xD1[C ra TXD1[C
as RXDo[C A5 RXDO|—
GND
Gyroscope
v YTOSCOp
VCC
[1GND
33V ggk
+9V | +9V N A h 4 — §Bf\
'—| |‘"‘| - _| I— S oy >—o/°_" —1ADD
10 kQ 1kQ 1kQ Recalibrat Enabl . —JINT
EMG Threshald Horizontal FOV Vertical FOV ecalibrate gyroscope Enadle Inpu
Figure 2

Circuit diagram
The project consists of an electromyograph board, a gyroscope, an Arduino Leonardo, an

Arduino Uno, and various potentiometers and switches for input. Considering that many

components require access to +5V, +3.3V, and ground pins, we have built rails similar to that

in a typical breadboard for ease of wiring.
There are multiple interfaces the user can use to control this system:

e ANnEMG

e A potentiometer to control the EMG threshold value

e A gyroscope

e Two potentiometers to control the gyroscope’s horizontal and vertical field of view
e A push button to re-calibrate and re-centre the gyroscope

e A master flick switch to turn the the mouse control override on or off by the system

2.2 Electromyograph

An EMG board is utilised in this project. Two external 9V batteries are required to power the
board, as instructed by the manufacturer. The signal and ground pins are connected to the
Arduino Uno for processing. A potentiometer is used to control the threshold value for a
positive EMG verdict.

2.3 Gyroscope
The gyroscope is connected to the Arduino Leonardo via the I2C protocol. Two potentiometers
are used to control the field of view angle the user is required to operate within in order to

control the cursor. A press switch is used to re-calibrate the gyroscope and re-centre the cursor.

3 Mechanical Design

3.1 Project Box

Figure 4

Figure 3 Project box, stage 2
Project box, stage 1

Figure 5
Project box, assembled

Our project box is split into two stages. Stage 1 houses the Arduino Leonardo and the
potentiometers and switches connected to it, while stage 2 houses the Arduino Uno and the
EMG board and potentiometer connected to it.

3.2 Gyroscope mount

Figure 6
Gyroscope mount

To mount the gyroscope onto the user’s glasses, we have designed a clip-on mount for ease of
use.

4 Software Design

4.1 Software Overview

Potentiometers
& switches

L J

Arduino Uno Arduino Leonardo

J

(EMG / +—» EMG Handler ———» /O Controller |«— GyroHandler l«—— Gyroscope
\ I J {)

Y
__—A———l Mouse ""‘-‘,‘ Debugger & .‘,-""‘

Interfacer "'\\ Profiler /

/

Potentiometer

N A
."/ Computer N\

\
\ Mouse API)
N _

Figure 7
Software design and interface diagram

We separated the responsibilities of the program into independent blocks, each handling one

independent part of the project.

4.2 EMG Interpreter
The EMG Interpreter receives signals from the EMG board and outputs an EMG verdict to the

Arduino Leonardo after processing.

EMGInterpreter::loop() {

emgSignal = analogRead() — analogRead();

emgThreshold = analogRead();

Serial.println((String)emgSignal + ", " + (String)emgThreshold + " 6 "
+ (String)thresholdCooldownCounter);

if (emgSignal > emgThreshold) {

thresholdCooldownCounter += 10;

thresholdCooldownCounter = min(thresholdCooldownCounter, thresholdCooldown);
} else {

thresholdCooldownCounter = max(thresholdCooldownCounter — 1, 0);

}

digitalwrite(, thresholdCooldownCounter = 5 ? HIGH : LOW);

The EMGInterpreter collects user input from the potentiometer to adjust the threshold value
and input signals from the EMG board, then checks if the EMG signal exceeds the user-
defined threshold value before finally giving a verdict to the Arduino Leonardo via

EMG_OUTPUT_PIN.

Due to the threshold calibration process requiring the use of the serial plotter to see the values
more easily in curves, we have thus opted to use another Arduino board in order not to clutter

the serial plotter plots for ease of discerning.

4.3 1/0 Controller
The 1/0 Controller is the main controlling unit of this program. It handles all the input and
output traffic and acts to coordinate between the different components.

I0Controller::loop() £

manageIOStates();

if (!mouseEnabled) {
return;

}

if (digitalRead(N1
gyroHandler—initialise();

}

gyroHandler—loop();
setMousePosition();

troller:: manageIOStates() {

newMouseEnabled = digitalRead(
if (newMouseEnabled = mouseEnabled) {
mouseEnabled = newMouseEnabled;
ugger::log("IO - Mouse", mouseEnabled ?
if (!mouseEnabled) {
mouseInterfacer—mouseClick(false);

}

if (mouseEnabled) {
mouseInterfacer—mouseClick(analogRead(

1dFov = tor2(0, 0);
roundToNearest(map(analogRead (X_ IN), 0, 1024, @, 90), F
roundToNearest(Ma map(analogRead(), 6, 1024, 0, 90), F
if (oldFOV.x # FOV.x || oldFov.y # FoOV.y) {

'(" + (String)analogRead(X_F) + ", " + (String)analogRead(
) = (" + (String)FOV.x + ", " + (String)FOV.y + ")'

ntroller:: setMousePosition() {
normalisedYaw = Ma i lamp(gyroHandler—getYPRANngles(0) / M_PI * 180 / FOV.x * 2, -1, 1);
normalisedPitch = clamp(gyroHandler—getYPRAngles(1) / M_PI * 180 / FOV.y = 2, -1, 1);

mouseInterfacer—mouseMove(normalisedYaw, normalisedPitch);

The 10controller collects user input from the potentiometers to adjust the internal field of
view settings, then collects input signals from the gyroHandler and EMG_INPUT_PIN before
finally pushing the desired cursor position and mouse button states to the mouseInterfacer.
The yaw of the user’s head is interpreted as controlling the horizontal position of the mouse
cursor, and the pitch is interpreted as the vertical position.

4.4 Mouse Interfacer

id MouseInterfacer ::mouseMove(d 0

AbsMouse .move(MathLite ::map(x, -1, 1, @, SCREEI

MouseInterfacer::mouseClick(bool newIsLeftClicking) {
if (isLeftClicking # newIsLeftClicking) {
islLeftClicking = newIsLeftClicking;
if (disLeftClicking) {
AbsMouse . press(MOUSE_LEFT);
} else {
AbsMouse.release(MOUSE_LEFT);
}

To control the mouse cursor, we used an external library <AbsMouse.h> since it allows us to
control the absolute position of the mouse cursor instead of only its deltas.
Note that the implementation of mouseclick() allows the left mouse button to be held down

instead of only clicking, thus enabling dragging inputs to be performed by the user.

4.5 Supplementary Libraries

We have written two helper libraries to be used in other parts of the program.

ss MathLite {

map(double value, ble fromLow, ble fromHigh, ble Le toHigh);
2 clamp(double value, double min, double max);

le absolute(double value);
le roundToNearest(1 le nearest);

getLength() { return sqrt(x * x + y * y); }
getDistance other) { re
getD
2 lerpPoints

n sqrt(pow(x - other.x, 2) + pow(y — other.y, 2)); }
b) { return a.getDistance(b); }

5 Appendix
Below are pictures of the work-in-progress circuits and wirings.

Figure 8
Circuits and wirings at different stages

10

